

Activated anionic ring-opening polymerization of ϵ -caprolactam with magnesium di(ϵ -caprolactamate) as initiator: effect of magnesium halides

Yulia A. Piskun · Irina V. Vasilenko ·
Ludmila V. Gaponik · Sergei V. Kostjuk

Received: 18 May 2011 / Revised: 27 July 2011 / Accepted: 21 August 2011 /

Published online: 31 August 2011

© Springer-Verlag 2011

Abstract The activated anionic ring-opening polymerization of ϵ -caprolactam initiated by 0.35 mol% of combined initiator, i.e., equimolar mixture of magnesium di(ϵ -caprolactamate) (CL_2Mg) with magnesium halides (MgCl_2 , MgBr_2 , and MgI_2) as well as of ϵ -caprolactam magnesium bromide (CLMgBr) in the presence of 0.35 mol% of *N*-acetyl- ϵ -caprolactam as an activator has been investigated in the temperature range 140–200 °C. It was found that the reaction rate increased while the apparent activation energy decreased in the following series: $\text{CL}_2\text{Mg}/\text{MgCl}_2 < \text{CL}_2\text{Mg}/\text{MgBr}_2 \sim \text{CLMgBr} < \text{CL}_2\text{Mg}/\text{MgI}_2$. In addition, the poly(ϵ -caprolactam)s prepared with $\text{CL}_2\text{Mg}/\text{MgX}_2$ ($\text{MgX}_2 = \text{MgCl}_2$, MgBr_2 , and MgI_2) are characterized by slightly higher thermal stability than polymers obtained with CLMgBr as initiator. These observations were explained in terms of the coordination of Lewis acids (MgX_2 , where $\text{X} = \text{Cl}$, Br , and I) with imide carbonyl of *N*-acyllactam end groups leading to the increase of their reactivity and stability.

Keywords Ring-opening polymerization · Anionic polymerization · ϵ -Caprolactam · Poly(ϵ -caprolactam) · Magnesium di(ϵ -caprolactamate)

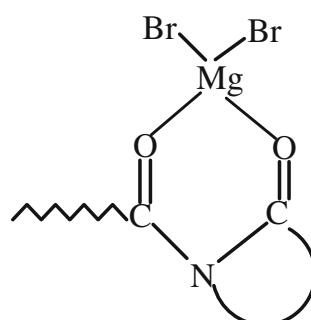
Introduction

Among polymerization of various cyclic amides [1], the anionic ring-opening polymerization (ROP) of ϵ -caprolactam is one of the most studied processes [1, 2]. The activated anionic ROP of ϵ -caprolactam is usually started with a two-component

Electronic supplementary material The online version of this article (doi: [10.1007/s00289-011-0621-x](https://doi.org/10.1007/s00289-011-0621-x)) contains supplementary material, which is available to authorized users.

Y. A. Piskun · I. V. Vasilenko · L. V. Gaponik · S. V. Kostjuk (✉)
Research Institute for Physical Chemical Problems of the Belarusian State University,
14 Leningradskaya St., 220030 Minsk, Belarus
e-mail: kostjuks@bsu.by; kostjuks@rambler.ru

catalytic system, consisting of lactam anion or their precursor as an initiator and *N*-acyllactam-type activator [1, 2]. The addition of activators with *N*-acyllactam structure, such as either monofunctional *N*-acetyl- ϵ -caprolactam [3–7] and *N*-benzoyl- ϵ -caprolactam [8–10] or difunctional *N,N'*-isophtaloyl-bis- ϵ -caprolactam [6, 10] and *N,N'*-hexamethylene-bis(carbamoyl- ϵ -caprolactam) [11–13], is critical for achieving high polymerization rate. This is because of the fact that the nucleophilic attack of the lactam anion on the carbonyl group in the monomer in so-called non-activated ROP of ϵ -caprolactam is considerably slower in comparison with that to the endocyclic carbonyl group in the activator [1, 2].


Sodium salt of ϵ -caprolactam (CLNa) or its precursors (sodium hydride, sodium methoxide) are a most used initiator in the (co)polymerization of lactams [7, 9, 11–17]. The main disadvantages of this initiator are rather high content of cyclic oligomers [18–20] in obtained polymers and relatively low thermal stability [5] of resulting polyamides.

ϵ -Caprolactam magnesium bromide (CLMgBr) in a combination with *N*-acyllactam activators represents another very active in the ROP of ϵ -caprolactam initiating system [6, 8–10, 21–24]. Due to the fast reaction rate (equilibrium content of polymer [17] is achieved for 5–10 min [25] and even in less than 5 min under optimized polymerization conditions [26]), this initiator was successfully used in the reaction injection molding technology to produce block copolymers of ϵ -caprolactam with polyethers [25]. Other magnesium salt of ϵ -caprolactam, magnesium di(ϵ -caprolactamate) (CL₂Mg), has received insignificant attention as initiator of ϵ -caprolactam polymerization due to its low activity in comparison with CLMgBr [4, 5, 27–29]. These magnesium salts of ϵ -caprolactam, in comparison with CLNa, are less sensitive to trace of water in the system [30] and also allow to synthesize polyamides with considerably higher thermal stability (especially in the case of using of CL₂Mg) [5, 29] and lower content of cyclic oligomers [18].

The rate of ϵ -caprolactam polymerization initiated by CL₂Mg could be significantly increased by the addition to the system of such Lewis acid as MgBr₂ [4, 5, 29]. The observed positive effect of this additive was explained by the increase of electrophilicity of imide carbonyl in *N*-acyllactam end groups due to its coordination with MgBr₂ (Fig. 1) [4, 5, 29].

The formation of the similar complex (see Fig. 1) was also claimed for the polymerization of ϵ -caprolactam initiated by CLMgBr, in this case MgBr₂ was

Fig. 1 Possible coordination of MgBr₂ with growing chain ends

generated *in situ* due to the disproportion reaction of CLMgBr in the reaction mixture (Eq. 1) [4, 5, 25, 29]:

Finally, the formation of the complexes of MgBr₂ with ε -caprolactam [31] and various model compounds [32, 33] has unambiguously been proven by different analytical techniques. Evidently, the change of the nature of added salt (MgBr₂) would influence the reactivity of growing species as well as the reaction rate significantly. In this article, we report the effect of magnesium halides (MgX₂, X = Cl, Br, and I) on the activated anionic ROP of ε -caprolactam initiated by CL₂Mg and the thermal stability of obtained polyamides.

Experimental

Materials

ε -Caprolactam (JSC “Grodno Azot”) was purified by double vacuum distillation followed by recrystallization from absolute benzene and stored under argon atmosphere. Benzene, 1,4-dioxane, and diethyl ether (Sigma-Aldrich) were dried by refluxing with Na/benzophenone ketyl, distilled, and stored under dry argon atmosphere. 1-Chlorobutane, 1-bromobutane, and 1-iodobutane (Sigma-Aldrich) were dried with CaCl₂ and then distillated with CaH₂ under argon atmosphere. Acetic anhydride (Sigma-Aldrich) was dried with sodium acetate and distillated in argon atmosphere. *m*-Cresol (Sigma-Aldrich) and magnesium chips (Sigma-Aldrich) were used as received.

N-acetyl- ε -caprolactam was synthesized according to known procedure [34] by refluxing of ε -caprolactam (1.15 mol) with an excess of acetic anhydride (3.9 mol) for 4 h followed by double vacuum distillation; the fraction boiling at 81–83 °C/1.5 mmHg was collected, and the purity was checked by ¹H NMR (Fig. S1).

CLMgBr was prepared following described procedure [35] by the reaction of equimolar quantities of butyl magnesium bromide with ε -caprolactam in diethyl ether. The solvent was evaporated under reduced pressure, and the resulting solid substance was dried in vacuum at 45–50 °C for 3 h. Analytical composition of initiator: Mg 11.1% (theor. 11.2%), Br 35.0% (36.9%). CL₂Mg–magnesium halide combined initiators were synthesized through the disproportionation of corresponding butyl magnesium halides by 1,4-dioxane followed by the addition of ε -caprolactam to resulting Bu₂Mg/MgX₂ mixture (X = Cl, Br, or I) as described in [27, 28]. Then, solvent was evaporated under reduced pressure, and the resulting solid substance was dried in vacuum at 80–100 °C for 3 h. As an example of typical procedure, the synthesis of MgCl₂/MgI₂ is presented in detail. The solution of butyl magnesium iodide in diethyl ether (3.2 M) was prepared by the reaction of magnesium (1 g, 4.2×10^{-2} M) with 1-iodobutane (4.7 mL, 4.2×10^{-2} M). Then, a solution of 1,4-dioxane (4.8 mL, 5.6×10^{-2} M) in diethyl ether was dropwise added within 10 min to the ethereal solution of butyl magnesium iodide to synthesize MgBu₂/MgI₂ mixture. The reaction was completed by refluxing for

30 min. After that, the ethereal solution of $\text{MgBu}_2/\text{MgI}_2$ (16.9 mL, 0.77 M) was added dropwise to the suspension of ε -caprolactam (3 g, 2.7×10^{-2} M) in diethyl ether (10 mL), and reaction mixture was stirred vigorously during 30 min. Then, the solvent was removed under vacuum at room temperature, and solid substance was dried in vacuum at 80–100 °C for 5 h. Analytical composition of initiator: Mg 8.6% (theor. 9.2%), I 44.9% (48.2%).

Polymerization

The polymerization mixture was prepared by mixing of ε -caprolactam (25 g), appropriate initiator (7.5×10^{-4} mol), and *N*-acetyl- ε -caprolactam (7.5×10^{-4} mol) at 90 °C under argon atmosphere and then charged into glass test tubes (~2.5 g of reaction mixture). Then, the tubes were immediately immersed into another bath at 140, 160, 180, or 200 °C for polymerization. After predetermined time, the polymerization was terminated by cooling the tubes in water (15 °C). The polymer yield was determined gravimetrically after two times successive extraction by boiling water for 2 h and drying at 70 °C up to constant weight as a ratio of sample weight after and before monomer extraction.

Polymer characterization

The content of Mg and halogen in the synthesized initiators was determined by chelatometric and Volhard's titrations, respectively. ^1H NMR spectra were recorded on a Bruker AC-400 spectrometer at 25 °C in CDCl_3 . The intrinsic viscosity of the obtained polymers was measured in *m*-cresol at 25 ± 0.1 °C using an Ubbelohde viscosimeter. The viscometric-average molecular weights (M_v) were calculated using the following equation: $[\eta] = 7.44 \times 10^{-4} \times M_v^{0.745}$ [5, 36]. Thermogravimetric analysis (TGA) was performed on a TGA51 TA Instruments apparatus between 20 and 550 °C under nitrogen with a heating rate 10 °C min^{-1} .

Results and discussion

The initiator represents a key component for the anionic ROP of ε -caprolactam and, therefore, influences significantly on the polymerization kinetics and the properties of obtained polymers [5, 18, 25, 28–30]. The results of the comparative study on the activity of CL_2Mg (in the presence of magnesium halides) and widely used CLMgBr in the activated anionic polymerization of ε -caprolactam are presented below.

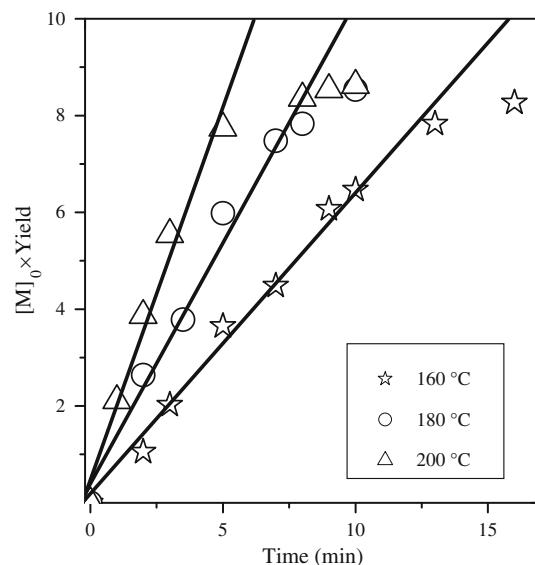
Magnesium di(ε -caprolactamate)

The activated ROP of ε -caprolactam was firstly investigated using $\text{CL}_2\text{Mg}/\text{MgX}_2$ ($\text{MgX}_2 = \text{MgCl}_2$, MgBr_2 , and MgI_2) as initiators in the presence of *N*-acetyl- ε -caprolactam as activator in a temperature range 140–200 °C.

$CL_2Mg/MgCl_2$ as initiator

The rate of the polymerization of ε -caprolactam with *N*-acetyl- ε -caprolactam/ $CL_2Mg/MgCl_2$ initiating system increased with increasing reaction temperature achieving the equilibrium monomer yield in less than 10 min at 180 and 200 °C (see ESM, Fig. S2). The dependences of polymer yield on the polymerization time (Fig. S2) are linear at least up to 80–85% of the monomer conversion indicating that the polymerization of ε -caprolactam exhibits zero-order kinetics in respect of the monomer concentration under investigated conditions.

According to [15, 16, 23], the rate of activated anionic polymerization of ε -caprolactam exhibiting zero-order kinetics could be expressed by following equations:


$$-\frac{d[M]}{dt} = k_{p\text{ app}} \quad (2)$$

$$[M]_0 - [M] = k_{p\text{ app}} \cdot t \quad (3)$$

where $[M]_0 - [M] = [M]_0 \times \text{yield}$, $k_{p\text{ app}}$ —the apparent rate constant and t —polymerization time.

As shown in Fig. 2, the zero-order plots are linear up to high monomer conversions (80–85%) and pass through the origin. The apparent rate constants calculated from the initial slopes of the above-mentioned plots (Fig. 2) were used to construct an Arrhenius plot (see ESM, Fig. S3). The apparent activation energy of polymerization of ε -caprolactam with *N*-acetyl- ε -caprolactam/ $CL_2Mg/MgCl_2$ initiating system was calculated from the slope of Arrhenius plot ($E_{a\text{ app}} = 45.3$ kJ mol⁻¹). This value is comparable with one reported for the ε -caprolactam polymerization with *N*-acetyl- ε -caprolactam/CLMgBr initiating system [25].

Fig. 2 Zero-order plots for ε -caprolactam polymerization initiated with 0.35 mol% of equimolar $CL_2Mg/MgCl_2$ mixture in the presence of 0.35 mol% of *N*-acetyl- ε -caprolactam at different temperatures

Fig. 3 Viscometric-average molecular weight versus yield dependences for ϵ -caprolactam polymerization initiated with 0.35 mol% of equimolar $\text{CL}_2\text{Mg}/\text{MgCl}_2$ mixture in the presence of 0.35 mol% of *N*-acetyl- ϵ -caprolactam at different temperatures

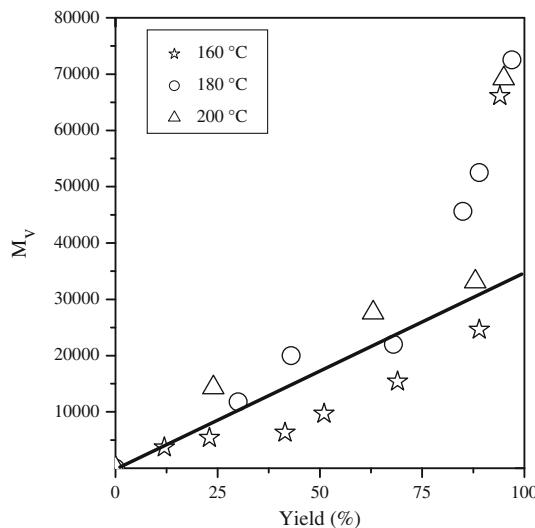
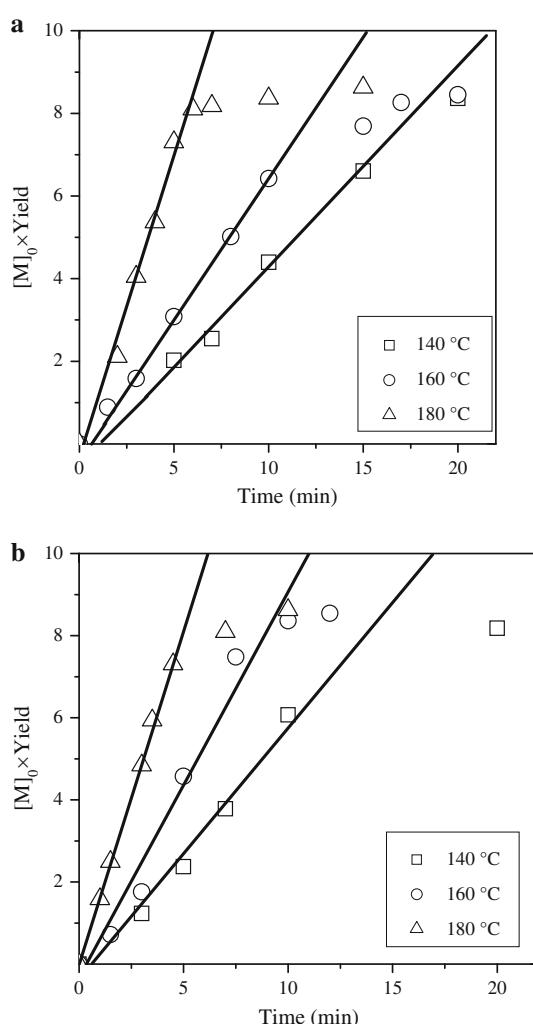
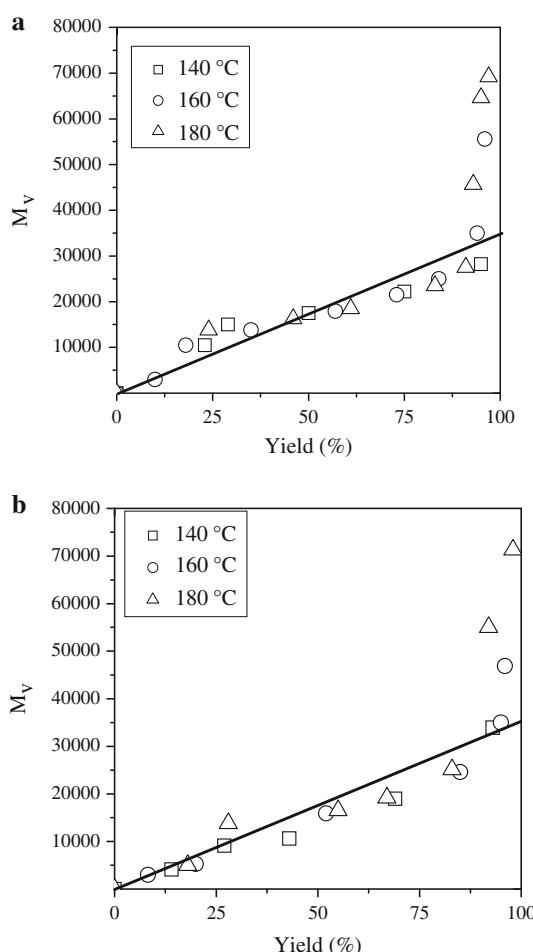


Figure 3 shows viscometric-average molecular weight (M_v) versus yield dependences for ϵ -caprolactam polymerization using *N*-acetyl- ϵ -caprolactam/ $\text{CL}_2\text{Mg}/\text{MgCl}_2$ initiating system at different temperatures. Note, that viscometric-average molecular weight was determined using relationships derived for the anionic poly(ϵ -caprolactam) and calibrated as a number-average by membrane osmometry [5, 36]. Therefore, assuming the similar molecular weight distribution for poly(ϵ -caprolactam)s prepared in this study, we can conclude that M_v is close to number-average molecular weight (M_n).

The viscometric-average molecular weight increased with increasing monomer conversion irrespective of polymerization temperature, while the experimental values of M_v correlated moderately with the theoretical line (constructed assuming that one molecule of activator (*N*-acetyl- ϵ -caprolactam) generated one polymer chain) up to 85–90% of monomer conversion (Fig. 3). This indicates that the anionic polymerization of ϵ -caprolactam proceeded in a controlled fashion under investigated conditions. However, an exponential increase of M_v at high monomer conversions is observed at all investigated temperatures and could be attributed to known Claisen type condensation reactions leading to the decrease of the growing chains concentration and the formation of “coupled” or even branched macromolecules [16, 25].


$\text{CL}_2\text{Mg}/\text{MgBr}_2$ and $\text{CL}_2\text{Mg}/\text{MgI}_2$ as initiators

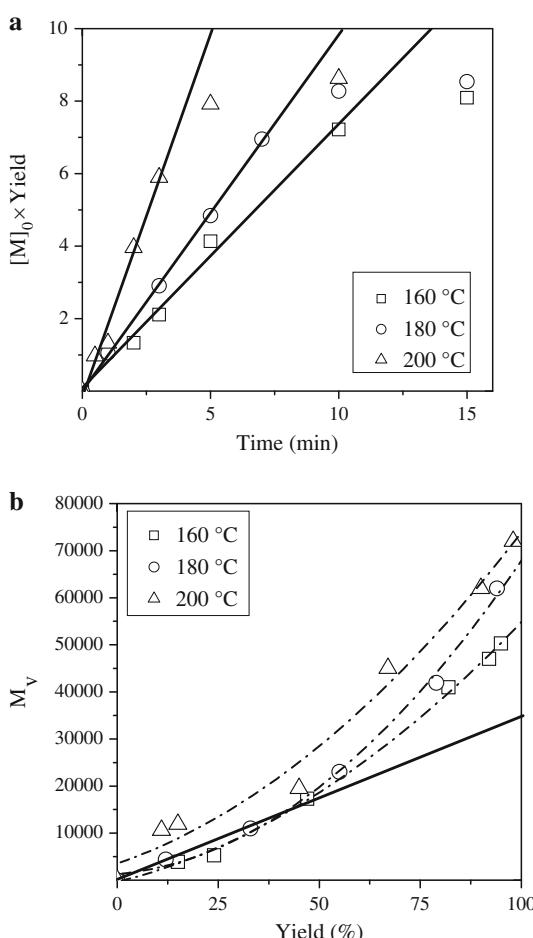
The polymerization of ϵ -caprolactam with *N*-acetyl- ϵ -caprolactam/ $\text{CL}_2\text{Mg}/\text{MgBr}_2$ and *N*-acetyl- ϵ -caprolactam/ $\text{CL}_2\text{Mg}/\text{MgI}_2$ initiating systems was then studied at three different reaction temperatures, i.e., 140, 160, and 180 °C. It was found that reaction rate increased in the following order: $\text{CL}_2\text{Mg}/\text{MgCl}_2 < \text{CL}_2\text{Mg}/\text{MgBr}_2 < \text{CL}_2\text{Mg}/\text{MgI}_2$ (see ESM, Figs. S2, S4, and S5). In addition, the polymerization of ϵ -caprolactam with *N*-acetyl- ϵ -caprolactam/ $\text{CL}_2\text{Mg}/\text{MgBr}_2$ and *N*-acetyl- ϵ -caprolactam/ $\text{CL}_2\text{Mg}/\text{MgI}_2$ initiating systems also exhibits zero-order kinetics in


respect of the monomer concentration, since the dependences of polymer yield on the reaction time (Fig. 4a, b) are linear up to high monomer conversions ($\sim 85\%$). Importantly, the polymerization of ε -caprolactam with $\text{CL}_2\text{Mg}/\text{MgI}_2$ as an initiator is characterized by lower value of the apparent activation energy ($E_{\text{a app}} = 38.6 \text{ kJ mol}^{-1}$, Fig. S6) in comparison with the mixtures of CL_2Mg with MgBr_2 ($E_{\text{a app}} = 41.7 \text{ kJ mol}^{-1}$, Fig. S7) or MgCl_2 ($E_{\text{a app}} = 45.3 \text{ kJ mol}^{-1}$, Fig. S3).

The viscometric-average molecular weight of poly(ε -caprolactam)s synthesized with $\text{CL}_2\text{Mg}/\text{MgBr}_2$ and $\text{CL}_2\text{Mg}/\text{MgI}_2$ as initiators increased in direct proportion to monomer conversion and experimental values of M_v correlated well with theoretical line (Fig. 5) indicating that the polymerization proceeded in a controlled fashion. The correlation between experimental and theoretical values of M_v is considerably better in the case of using $\text{CL}_2\text{Mg}/\text{MgBr}_2$ or $\text{CL}_2\text{Mg}/\text{MgI}_2$ in comparison with

Fig. 4 Zero-order plots for ε -caprolactam polymerization initiated with 0.35 mol% of equimolar **a** $\text{CL}_2\text{Mg}/\text{MgBr}_2$ and **b** $\text{CL}_2\text{Mg}/\text{MgI}_2$ mixtures in the presence of 0.35 mol% of *N*-acetyl- ε -caprolactam at different temperatures

Fig. 5 Viscometric-average molecular weight versus yield plots for ε -caprolactam polymerization initiated with 0.35 mol% of equimolar **a** $\text{CL}_2\text{Mg}/\text{MgBr}_2$ and **b** $\text{CL}_2\text{Mg}/\text{MgI}_2$ mixtures in the presence of 0.35 mol% of *N*-acetyl- ε -caprolactam at different temperatures



$\text{CL}_2\text{Mg}/\text{MgCl}_2$ as an initiator (compare Figs. 3 and 5). This observation points out that the side reactions are suppressed to a higher extent in the presence of MgBr_2 and MgI_2 as the additives than with MgCl_2 . However, the side reactions leading to an exponential growth of M_v are still operated under monomer starved conditions, at least, at high reaction temperatures (160 and 180 °C).

ε -Caprolactam magnesium bromide

In order to compare the results obtained during the investigation of the anionic ROP of ε -caprolactam with $\text{CL}_2\text{Mg}/\text{MgX}_2$ ($\text{MgX}_2 = \text{MgCl}_2, \text{MgBr}_2$, and MgI_2) initiating systems with well-known initiator, the polymerization of ε -caprolactam initiated by CLMgBr was briefly investigated. As shown in Fig. 6a and Fig. S8, the polymerization of ε -caprolactam with *N*-acetyl- ε -caprolactam/CLMgBr initiating system was zero order in monomer concentration. The reaction rates as well as the

Fig. 6 **a** Zero-order and **b** viscometric-average molecular weight versus yield plots for ϵ -caprolactam polymerization initiated with 0.35 mol% of ϵ -caprolactam magnesium bromide (CLMgBr) in the presence of 0.35 mol% of *N*-acetyl- ϵ -caprolactam at different temperatures

apparent activation energy ($E_{\text{a app}} = 42.2 \text{ kJ mol}^{-1}$, Fig. S9) for the ϵ -caprolactam polymerization initiated by CLMgBr were found to be comparable with those obtained for $\text{CL}_2\text{Mg}/\text{MgBr}_2$ as initiator (vide supra).

As shown in Fig. 6b, the M_v s of obtained polymers increased with increasing polymer yield indicating that polymerization of ϵ -caprolactam with *N*-acetyl- ϵ -caprolactam/CLMgBr initiating system proceeded in a controlled fashion. However, in contrast to the polymerization with $\text{CL}_2\text{Mg}/\text{MgX}_2$ ($\text{MgX}_2 = \text{MgCl}_2, \text{MgBr}_2$, and MgI_2) where a good correlation between experimental and calculated values of M_v s was observed up to high monomer conversions ($\geq 85\%$) (Figs. 3, 5a, b), the M_v s started to deviate from theoretical line at conversions higher than 50% when CLMgBr was used as initiator (Fig. 6b). This observation indicates that the side condensation reactions are suppressed to a lesser extent with CLMgBr as initiator in comparison with a mixture of CL_2Mg with magnesium halides.

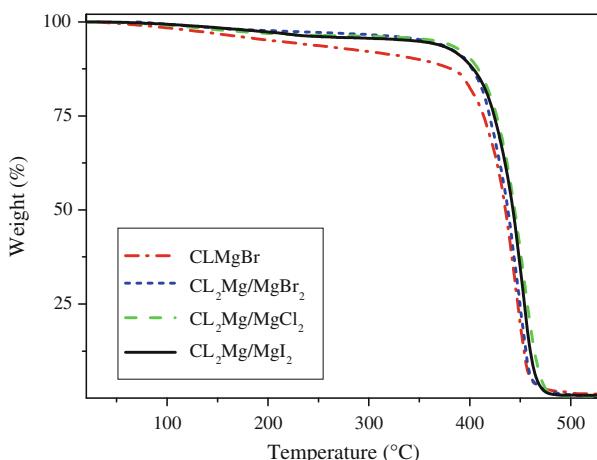

Conclusive discussion

Table 1 summarizes the main results from this study in terms of polymerization kinetics for two type of initiators studied, i.e., $\text{CL}_2\text{Mg}/\text{MgX}_2$ ($\text{MgX}_2 = \text{MgCl}_2$, MgBr_2 , and MgI_2) and CLMgBr . As it is evident from Table 1, for the polymerization of ε -caprolactam with $\text{CL}_2\text{Mg}/\text{MgX}_2$ as initiator, the reaction rate is progressively increased while the apparent activation energy is decreased in the series $\text{MgCl}_2 < \text{MgBr}_2 < \text{MgI}_2$. This row is fully consistent with the decrease of lattice energies of the magnesium halides, MgCl_2 (595 kcal mol⁻¹), MgBr_2 (571 kcal mol⁻¹), and MgI_2 (545 kcal mol⁻¹) [37], as well as with the increase of their Lewis acidity [38, 39]. In addition, the rate of insertion of magnesium into porphyrins is also increased in the same series: $\text{MgCl}_2 < \text{MgBr}_2 < \text{MgI}_2$ [40]. Taking into account these facts, the observed influence of magnesium halides on the polymerization kinetics could be explained by (and also confirmed) the formation of complex between MgX_2 and growing chain ends (see Fig. 1). The stronger Lewis acids due to the stronger coordination with imide carbonyl of *N*-acyllactam end groups (Fig. 1) increased their reactivity to a higher extent in comparison with weaker Lewis acids that, in turns, leads to the higher reaction rate and lower apparent activation energy with $\text{CL}_2\text{Mg}/\text{MgI}_2$ as compared with $\text{CL}_2\text{Mg}/\text{MgBr}_2$ or $\text{CL}_2\text{Mg}/\text{MgCl}_2$.

Another interesting observation is that the reaction rates at different temperatures as well as the apparent activation energies are almost similar for the polymerization of ε -caprolactam with CLMgBr and $\text{CL}_2\text{Mg}/\text{MgBr}_2$ as initiators (Table 1). This confirms the accepted point of view that during the polymerization of ε -caprolactam with CLMgBr , the disproportion reaction takes place with the in situ formation of CL_2Mg and MgBr_2 [4, 5, 25, 29, 31–33]. On the other hand, an exponential increase of M_v with yield was already observed at moderate monomer conversions (i.e., 50–60%) for CLMgBr (Fig. 6b) in comparison with $\text{CL}_2\text{Mg}/\text{MgX}_2$ mixtures where deviation of experimental values of M_v from theoretical line starts to occur only at high conversions $\geq 85\%$ (Figs. 3, 5a, b). In other words, the stabilization of growing species occurs to a lesser extent with CLMgBr as an initiator as compared to $\text{CL}_2\text{Mg}/\text{MgX}_2$ system that could be connected with the presence in the system of several types of species (CLMgBr , MgBr_2 , and MgCl^+) [4, 29] with different coordination ability to growing chains.

Table 1 The apparent rate constants (k_p app) and apparent activation energies (E_a app) for the anionic polymerization of ε -caprolactam with different initiators (0.35 mol%) in the presence of 0.35 mol% of *N*-acetyl- ε -caprolactam

Initiator	k_p app $\times 10^2$ (mol kg ⁻¹ s ⁻¹)								E_a app (kJ mol ⁻¹)
	140 °C	R^2	160 °C	R^2	180 °C	R^2	200 °C	R^2	
$\text{CL}_2\text{Mg}/\text{MgCl}_2$	–	–	1.03	0.993	1.66	0.990	3.06	0.990	45.3
$\text{CL}_2\text{Mg}/\text{MgBr}_2$	0.81	0.995	1.14	0.999	2.34	0.994	–	–	41.7
$\text{CL}_2\text{Mg}/\text{MgI}_2$	1.02	0.991	1.57	0.996	2.71	0.999	–	–	38.6
CLMgBr	–	–	1.21	0.996	1.94	1.000	3.34	0.993	42.2

Fig. 7 TGA thermograms of poly(ϵ -caprolactam)s prepared with different initiators at 160 °C

As we mentioned above, based on the analysis of M_v versus yield plots of poly(ϵ -caprolactam)s obtained with $\text{CL}_2\text{Mg}/\text{MgX}_2$ and CLMgBr , the side condensation reactions leading to observed exponential increase of M_v are more pronounced in the case of using of CLMgBr . This, in turn, should influence the thermal stability of obtained polymers. Indeed, as shown in Fig. 7, the poly(ϵ -caprolactam)s prepared with $\text{CL}_2\text{Mg}/\text{MgX}_2$ ($\text{MgX}_2 = \text{MgCl}_2$, MgBr_2 , and MgI_2) are characterized by slightly higher thermal stability than polymers obtained with CLMgBr as initiator: for example, the loss of weight was 4 and 10% at 360 °C for $\text{CL}_2\text{Mg}/\text{MgI}_2$ and CLMgBr , respectively. On the other hand, the nature of added salt (MgX_2) does not influence on the thermal stability of polyamides prepared with $\text{CL}_2\text{Mg}/\text{MgX}_2$ as initiator (Fig. 7). According to Kotelnikov et al. [5], the depolymerization/destruction of poly(ϵ -caprolactam)s due to the presence of initiators residue in the obtained polymers is responsible for the thermal decomposition. Therefore, the nature of initiator would influence strongly the thermal stability of synthesized poly(ϵ -caprolactam)s.

Conclusion

In conclusion, we have shown that CL_2Mg in combination with magnesium halides ($\text{MgX}_2 = \text{MgCl}_2$, MgBr_2 , and MgI_2) represents an efficient initiator for the activated anionic ROP of ϵ -caprolactam. The rate of reaction increased while apparent activation energy decreased with the increasing Lewis acidity of corresponding magnesium halide that is consistent with the stronger coordination of stronger Lewis acid with imide carbonyl of *N*-acyllactam end groups leading to the increase of their reactivity. This coordination led also to the suppression of side condensation reactions during the polymerization of ϵ -caprolactam initiated by $\text{CL}_2\text{Mg}/\text{MgX}_2$ allowing to synthesize polymers with more controlled molecular

weight and better thermal stability in comparison with those prepared with well-known CLMgBr initiator.

Acknowledgment We would like to thank the Institut Charles Gerhardt, équipe “IAM” (France) for TGA analyses of polyamide samples.

References

1. Hashimoto K (2000) Ring-opening polymerization of lactams. Living anionic polymerization and its applications. *Prog Polym Sci* 25:1411–1462
2. Sekiguchi H (1984) Lactams and cyclic imides. In: Ivin KJ, Saegusa T (eds) *Ring-opening polymerization*, vol 2. Elsevier, London, p 809
3. Kotelnikov VA, Kurashev VV, Frunze TM (1987) Some features of anionic polymerization of ϵ -caprolactam in the presence of aluminum caprolactamate. *Vysokomol Soedin* 29A:2642–2646
4. Kotelnikov VA, Kurashev VV, Tolstobrodrova ID, Danilevskaya LB, Zaharkin LI, Chekulaeva LA, Gavrilenko VV, Garbuzova IA (1989) Mechanism of anionic polymerization of ϵ -caprolactam in the presence of magnesium lactamates. *Dokl Akad Nauk SSSR* 308:1176–1181
5. Kotelnikov VA, Danilevskaya LB, Kurashev VV, Ilina MN, Papkov VV, Gavrilenko VV, Chekulaeva LA (1993) Influence of the nature of catalyst of anionic polymerization of lactams on the thermal stability of obtained polyamides. *Vysokomol Soedin* 35A:1257–1260
6. Udipi K, Dave RS, Kruse RL, Stebbins LR (1997) Polyamides from lactams via anionic ring-opening polymerization: 1. Chemistry and some recent findings. *Polymer* 38:927–938
7. Crespy D, Landfester K (2005) Anionic polymerization of ϵ -caprolactam in miniemulsion: synthesis and characterization of polyamide-6 nanoparticles. *Macromolecules* 38:6882–6887
8. Budín J, Brožek J, Roda J (2006) Polymerization of lactams, 96. Anionic copolymerization of ϵ -caprolactam with ω -laurolactam. *Polymer* 47:140–147
9. Budín J, Roda J, Brožek J, Kříž J (2006) Anionic copolymerization of ϵ -caprolactam with ω -laurolactam. *Macromol Symp* 240:78–82
10. Rusu G, Ueda K, Rusu E, Rusu M (2001) Polyamides from lactams by centrifugal molding via anionic ring-opening polymerization. *Polymer* 42:5669–5678
11. Mateva R, Petrov P (1999) On the activating anionic polymerization of ϵ -caprolactam in bulk caused by bis carbamyl derivatives. *Eur Polym J* 35:325–333
12. Mateva R, Petrov P, Rousseva S, Dimitrov R, Zolova G (2000) On the structure of poly- ϵ -caprolactams, obtained with bifunctional *N*-carbamyl derivatives of lactams. *Eur Polym J* 36:813–821
13. Ricco L, Russo S, Orefice G, Riva F (2001) Caprolactam-laurolactam copolymers: fast activated anionic synthesis, thermal properties and structural investigations. *Macromol Chem Phys* 202: 2114–2121
14. Šimůnková E, Zelinger J, Kubánek V, Králíček J (1977) The structure and physical properties of copolymers of lactams. *J Appl Polym Sci* 21:65–81
15. Marelová J, Roda J, Stehlíček J (1999) Anionic polymerization of ϵ -caprolactam in the presence of symmetrically substituted ureas. *Eur Polym J* 35:145–155
16. Sobotník R, Šrubař R, Roda J (1997) Polymerization of lactams, 88. Copolymers poly(ϵ -caprolactam)-block-polybutadiene prepared by anionic polymerization, part III. Model polymerizations initiated with potassium salt of ϵ -caprolactam and accelerated with isocyanates and their derivatives. *Macromol Chem Phys* 198:1147–1163
17. Havlice J, Brožek J, Šáchorová M, Nováková V, Roda J (1999) Polymerization of lactams, 92. Non-activated anionic polymerization of ϵ -caprolactam initiated with the sodium salt of ϵ -caprolactam. *Macromol Chem Phys* 200:1200–1207
18. Arnoldová P, Prokopová I, Bernat P, Roda J (1999) Polymerization of lactams, 94. Formation of cyclic oligomers in anionic polymerization of 6-hexanelactam. *Angew Makromol Chem* 269:25–29
19. Casazza E, Ricco L, Russo S, Scamporrino E (2007) Nature of low molar mass peak in anionic poly(ϵ -caprolactam). Its identification as macrocyclic ensemble. *Macromolecules* 40:739–745
20. Ricco L, Casazza E, Mineo P, Russo S, Scamporrino E (2008) Nature of low molar mass peak in anionic poly(ϵ -caprolactam). Main aspects of its formation. *Macromolecules* 41:3904–3911

21. Stehlíček J, Puffr R (1992) Anionic polymerization of 6-hexanelactam, 62. Fast catalytic systems in the anionic polymerization of 6-hexanelactam. *Makromol Chem* 193:2539–2545
22. Bernášková A, Chromcová D, Brožek J, Roda J (2004) Polymerization of lactams, 95. Preparation of polyesteramides by the anionic polymerization of ϵ -caprolactam in the presence of poly(ϵ -caprolactone). *Polymer* 45:2141–2148
23. Merna J, Chromcová D, Brožek J, Roda J (2006) Polymerization of lactams: 97. Anionic polymerization of ϵ -caprolactam activated by esters. *Eur Polym J* 42:1569–1580
24. Chromcová D, Baslerová L, Roda J, Brožek J (2008) Polymerization of lactams. 99. Preparation of polyesteramides by the anionic copolymerization of ϵ -caprolactam and ϵ -caprolactone. *Eur Polym J* 44:1733–1742
25. Roda J (2009) Polyamides. In: Dubois P, Coulembier O, Raquez J-M (eds) *Handbook of ring-opening polymerization*. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, pp 165–195
26. Khodabakhshi K, Gilbert M, Dickens P, Hague R (2010) Optimizing conditions for anionic polymerization of caprolactam for inkjetting. *Adv Polym Technol* 29:226–236
27. Černy Z, Kříž O, Fusek J, Čánský B, Bernat P, Brožek J, Roda J (1998) Synthesis, characterization and properties of magnesium di(ϵ -caprolactamate). *J Organomet Chem* 555:237–245
28. Nováková V, Šáchová M, Brožek J, Bernat P, Roda J (1996) Polymerization of lactams, 89. Magnesium caprolactamates as initiators of ϵ -caprolactam polymerization. *Macromol Symp* 102:115–122
29. Kotelnikov VA, Kurashev VV, Danilevskaya LB, Konova IO, Gavrilenko VV, Chekulaeva LA, Garbuszova IA, Persic IE (1992) Active centers and some features of anionic polymerization of ϵ -caprolactam initiated by magnesium lactamates. *Vysokomol Soedin* 34A:69–75
30. Bernat P, Hladká O, Fišmanová M, Roda J, Brožek J (2008) Polymerization of lactams. 98: Influence of water on the non-activated polymerization of ϵ -caprolactam. *Eur Polym J* 44:32–41
31. Kříž J, Dybal J, Kurková D, Arnoldová P, Prokopova I, Brožek J, Hroch Z (2001) Molecular structure of the complex of hexano-6-lactam with magnesium bromide. *Macromol Chem Phys* 202:1194–1199
32. Kříž J, Dybal J, Kurková D, Prokopova I, Hroch Z (2001) Molecular structure of the complex of octano-8-lactam with magnesium bromide. *Macromol Chem Phys* 202:3371–3378
33. Arnoldová P, Brus J, Prokopova I, Brožek J (2006) Role of magnesium complexes in the anionic polymerization of hexano-6-lactam. *e-Polymers* 068:1–11
34. Benson RE, Cairns TL (1948) Chemical reactions of caprolactam. *J Am Chem Soc* 70:2115–2118
35. Hodek RB, Seiner JA (1985) US Patent 4508646
36. Goebel CV, Čefelin P, Stehlíček J, Šebenda J (1972) Anionic polymerization of caprolactam. XLIII. Relationship between osmometric molecular weight, viscosity, and endgroups of a polymer. *J Polym Sci A Polym Chem* 10:1411–1427
37. Finch A, Gardner PJ (1965) Lattice energies of ionic crystals—I: group IIa halides. *J Inorg Nucl Chem* 27:535–539
38. Wei H-X, Jasoni RL, Hu J, Li C, Pare PW (2004) Z/E Stereoselective synthesis of β -bromo Baylis-Hillman ketones using $MgBr_2$ as promoter via one-pot three-component reaction. *Tetrahedron* 60:10233–10237
39. Zhang X, Li C, Chen W, Wu X (2010) An approach to synthesis of 3-aryl-2-oxazolidinones and in situ “click” assembly of 1,2,3-triazole oxazolidinones. *Lett Org Chem* 7:226–228
40. Lindsey JS, Woodford JN (1995) A simple method for preparing magnesium porphyrins. *Inorg Chem* 34:1063–1069